
APPLICATION NOTE
SEPTEMBER 26, 2025

Summary

2. Model Architectures

1. Introduction

We conducted a benchmarking study comparing our neuromorphic object detection model Spiking
YOLO(YOLOv8+Meta-SpikeFormer) against conventional YOLOv8 deep learning approaches. Our
evaluation assessed performance across multiple critical dimensions: accuracy, computational efficiency,
power consumption, and hardware deployment characteristics.

We demonstrated that neuromorphic approaches achieve competitive accuracy (66.2% mAP@50 on
COCO, 67.2% mAP@50 on Gen1) while delivering significant advantages in power efficiency and edge
deployment scenarios. 

Our results show up to 5.7× energy efficiency improvement over conventional approaches.

YOLOv8 (Baseline)
We established YOLOv8 as our baseline, implementing the state-of-the-art CNN-based object detector. It uses
C2f  module as its core module and processes single frame. The visualization below shows YOLOv8's three main
components: Backbone (feature extraction), Neck (feature fusion with Feature Pyramid Network (FPN)), and
Head (multi-scale detection). The input to the network is standard static image (no temporal dimension), size of
640 x 640 x 3(RGB channels). The network outputs bounding boxes(center coordinates(x, y) and dimensions(w,
h)), class probabilities (class predictions for detected objects), and objectness scores at different scales.

Traditional object detection models like YOLOv8 rely on continuous-valued activations and multiply-
accumulate (MAC) operations, resulting in high energy consumption that limits their deployment in resource-
constrained environments. We identified the need for energy-efficient alternatives that maintain competitive
detection performance. 

We designed and implemented SpikeYOLO [1], a bio-inspired approach using spiking neural networks
(SNNs) that communicate through binary spikes. This architecture enables energy-efficient computation
through sparse addition operations rather than power-intensive MAC operations. We incorporated two
critical innovations in our SpikeYOLO implementation:

Simplified Architecture: Streamlined design removing complex modules from YOLOv8 that cause
spike degradation
Integer-LIF (I-LIF) Neurons: Novel spiking neurons that train with integer values but inference with
binary spikes.
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Spiking YOLO 
We designed SpikeYOLO by recognizing that complex ANN modules are not suitable for SNN architecture. Our
implementation incorporates Meta-SpikeFormer blocks [4] with direct SNN training for enhanced architectural
flexibility. 

For Static Images (COCO dataset):
Input format: X ∈ R  , where T=timesteps, C=channels, H×W=spatial resolutionT ×C×H×W

We implemented direct input encoding where images are repeated across timesteps to leverage spatio-
temporal SNN capabilities
First layer spiking neurons encode continuous input values into spike signals

For Neuromorphic Event Streams (Gen1 dataset):
We processed Dynamic Vision Sensor (DVS) data characterized as (x_n, y_n, t_n, p_n)
Each event captures: spatial coordinates (x,y), timestamp t, polarity p ∈ {-1,1}
We developed event aggregation within fixed time windows (T×dt duration)

The overall architecture of  SpikeYOLO can be found as below. The main idea of  architecture design it to use
meta SNN block in Meta-SpikeFormer and merges it with the YOLOv8 architecture. SNN-Block-1 employs
standard convolution within its ChannelConv (·) component, whereas SNN-Block-2 utilizes re-parameterization
convolution. That is, the difference between the two is the channel mixer module. Detailed explanation of  SNN-
Block-1 and SNN-Block-2 and their difference can be found in [1]. In the low and high stages, SNN-Block-1 and
SNN-Block-2 were used respectively. 



Datasets
We evaluated model performance on COCO 2017 val [2] and neuromorphic Gen1 [3] datasets respectively.

COCO 2017: Static object detection dataset (80 classes, 118K training, 5K validation images)
Gen1 Automotive: Neuromorphic dataset (39 hours of  driving scenarios, 304×240 resolution

3. Performance Benchmarking Results

We designed a comprehensive testing framework to evaluate:
Detection accuracy (mAP@50, mAP@50:95)
Power consumption (mJ per inference)
Parameter efficiency (millions of  parameters)
Energy efficiency ratios

We converted YOLOv8 directly into corresponding spiking versions to ensure fair comparison. All models were
tested under controlled conditions with consistent hardware and software environments.

Static Images - COCO 2017 Dataset Performance

YOLOv8 model was not tested directly but it was converted directly into the corresponding spiking version. As
seen in the table below, Spike YOLO significantly improves the performance upper bound of  the COCO dataset in
SNNs (YOLOv8 version). Moreover, the performance gap between SNNs and ANNs is significantly narrowed. For
example, under similar parameters, the performance of  Spike YOLO and YOLOv5 are comparable, and the
energy efficiency is 3.3×.

Gen1 Neuromorphic Dataset Performance
Our evaluation on Gen1 dataset revealed superior performance for temporal data processing, as shown in Table
2.  We achieved 67.2% mAP@50 with 23.1M parameters with Spike SNN. Our SpikeYOLO demonstrated +2.5%
higher accuracy than equivalent ANN architecture. We documented 5.7× energy efficiency improvement,
confirming SNN advantages for neuromorphic data. 



Neuromorphic Hardware Deployment Analysis
Recent studies on neuromorphic hardware deployment reveal significant challenges when scaling complex object
detection models. We found a table that reveals the significant challenges of  deploying complex object detection
models on current neuromorphic hardware. YOLO-KP running on Loihi demonstrates substantially worse
performance compared to conventional hardware (Jetson Xavier), consuming 10.4 mJ/frame with 36.3 ms latency
versus Jetson's 14.1 mJ/frame and 3.11 ms latency - resulting in an 11.7× latency penalty despite only 26%
energy savings. However, this performance must be contextualized by the dramatic difference in computational
complexity: YOLO-KP processes 18× larger inputs (448×448×3 vs 66×200×3) and employs 10× more parameters
(3.4M vs 0.35M) than the simpler PilotNet model, while requiring a 5-chip networked configuration that introduces
inter-chip communication overhead. The modest improvements when excluding I/O operations (15% energy
reduction, 12% latency improvement) indicate that computational complexity, rather than data transfer
bottlenecks, represents the primary performance limitation. These results highlight that while neuromorphic
hardware can execute complex object detection tasks, current multi-chip scaling approaches face significant
efficiency challenges, reinforcing the need for purpose-built architectures like SpikeYOLO that are specifically
designed to leverage neuromorphic hardware strengths rather than adapting conventional models.

The above analysis demonstrates that SpikeYOLO's architectural innovations address critical limitations in
neuromorphic deployment:

Simplified Architecture: Reduces the computational complexity that causes multi-chip scaling issues
Integer-LIF Design: Minimizes the quantization errors that compound across networked chips
Purpose-Built Approach: Designed for neuromorphic constraints rather than adapted 

4. Conclusions and Recommendations

We successfully designed, implemented, and evaluated SpikeYOLO, demonstrating that neuromorphic
approaches can achieve competitive detection accuracy while providing substantial energy efficiency
improvements. Our work represents a significant advancement in energy-efficient object detection. The results
validate the practical viability of  neuromorphic object detection for real-world deployment, particularly in
scenarios where power consumption is critical and temporal data processing is required.

We are going to ship our neuromorphic HDK (Artix-7/US+, PCIe Gen2 x4) to early users with SDK v0.1 and
reproducible YOLOv8/YOLO-KP benchmarks (target ≥40 FPS @ ≤1 W, ~75.7 GOP/s/W); validate neuromorphic
advantages with end-to-end energy profiling and temporal-sparsity wins (≥2–3× GOP/s/W vs. Jetson Nano)
across multiple scenes; and advance a 28 nm ASIC targeting ~1.2 TOP/s, ~0.3 W, (~4.0 TOP/s/W), with
performance targets validated via pre-silicon emulation, shuttle tape-out, and post-silicon correlation.

5. Roadmap
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