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Summary

We conducted a benchmarking study comparing our neuromorphic object detection model Spiking
YOLO(YOLOv8+Meta-SpikeFormer) against conventional YOLOvV8 deep learning approaches. Our
evaluation assessed performance across multiple critical dimensions: accuracy, computational efficiency,
power consumption, and hardware deployment characteristics.

We demonstrated that neuromorphic approaches achieve competitive accuracy (66.2% mAP@50 on
COCO, 67.2% mAP@50 on Gen1) while delivering significant advantages in power efficiency and edge
deployment scenarios.

Our results show up to 5.7% energy efficiency improvement over conventional approaches.
1. Introduction

Traditional object detection models like YOLOVS8 rely on continuous-valued activations and multiply-
accumulate (MAC) operations, resulting in high energy consumption that limits their deployment in resource-
constrained environments. We identified the need for energy-efficient alternatives that maintain competitive
detection performance.

We designed and implemented SpikeYOLO [1], a bio-inspired approach using spiking neural networks
(SNNs) that communicate through binary spikes. This architecture enables energy-efficient computation
through sparse addition operations rather than power-intensive MAC operations. We incorporated two
critical innovations in our SpikeYOLO implementation:
. Simplified Architecture: Streamlined design removing complex modules from YOLOvS8 that cause
spike degradation
. Integer-LIF (I-LIF) Neurons: Novel spiking neurons that train with integer values but inference with
binary spikes.

2. Model Architectures

YOLOv8 (Baseline)

We established YOLOvV8 as our baseline, implementing the state-of-the-art CNN-based object detector. It uses
C2f module as its core module and processes single frame. The visualization below shows YOLOv8's three main
components: Backbone (feature extraction), Neck (feature fusion with Feature Pyramid Network (FPN)), and
Head (multi-scale detection). The input to the network is standard static image (no temporal dimension), size of
640 x 640 x 3(RGB channels). The network outputs bounding boxes(center coordinates(x, y) and dimensions(w,
h)), class probabilities (class predictions for detected objects), and objectness scores at different scales.



YOLOv8 Architecture
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Spiking YOLO

We designed SpikeYOLO by recognizing that complex ANN modules are not suitable for SNN architecture. Our
implementation incorporates Meta-SpikeFormer blocks [4] with direct SNN training for enhanced architectural
flexibility.

For Static Images (COCO dataset):
. Input format: X € R "***W 'where T=timesteps, C=channels, HxW=spatial resolution
. We implemented direct input encoding where images are repeated across timesteps to leverage spatio-
temporal SNN capabilities
. First layer spiking neurons encode continuous input values into spike signals

For Neuromorphic Event Streams (Gen1 dataset):
. We processed Dynamic Vision Sensor (DVS) data characterized as (x_n, y_n, t_n, p_n)
. Each event captures: spatial coordinates (x,y), timestamp t, polarity p € {-1,1}
. We developed event aggregation within fixed time windows (Txdt duration)

The overall architecture of SpikeYOLO can be found as below. The main idea of architecture design it to use
meta SNN block in Meta-SpikeFormer and merges it with the YOLOv8 architecture. SNN-Block-1 employs
standard convolution within its ChannelConv (-) component, whereas SNN-Block-2 utilizes re-parameterization
convolution. That is, the difference between the two is the channel mixer module. Detailed explanation of SNN-
Block-1 and SNN-Block-2 and their difference can be found in [1]. In the low and high stages, SNN-Block-1 and
SNN-Block-2 were used respectively.



Datasets

We evaluated model performance on COCO 2017 val [2] and neuromorphic Gen1 [3] datasets respectively.
. COCO 2017: Static object detection dataset (80 classes, 118K training, 5K validation images)
. Gen1 Automotive: Neuromorphic dataset (39 hours of driving scenarios, 304x240 resolution

3. Performance Benchmarking Results

We designed a comprehensive testing framework to evaluate:
. Detection accuracy (MAP@50, mMAP@50:95)
. Power consumption (mJ per inference)
. Parameter efficiency (millions of parameters)
. Energy efficiency ratios

We converted YOLOvV8 directly into corresponding spiking versions to ensure fair comparison. All models were
tested under controlled conditions with consistent hardware and software environments.

Static Images - COCO 2017 Dataset Performance

YOLOv8 model was not tested directly but it was converted directly into the corresponding spiking version. As
seen in the table below, Spike YOLO significantly improves the performance upper bound of the COCO dataset in
SNNs (YOLOvVS version). Moreover, the performance gap between SNNs and ANNs is significantly narrowed. For
example, under similar parameters, the performance of Spike YOLO and YOLOv5 are comparable, and the
energy efficiency is 3.3x.

Table 1: Results on COCO 2017 yal,

Model Parameters | Power mAP@S0 | mAP@50:95 Energy
(M) (md) (%) (%) Efficiency

YOLOvS 21.2 112.5 64.1 454 Baseline
YOLOv8 25.8 183.5 67.2 50.2 Baseline
(ANN- SNN)
SpikeYOLO 23.1 34.6 62.3 45.5 3.3x vs
( T=1xD=4) YOLOvS
SpikeYOLO 68.8 84.2 66.2 489 1.3x vs
( T=1xD=4) YOLOvS

Gen1 Neuromorphic Dataset Performance

Our evaluation on Gen1 dataset revealed superior performance for temporal data processing, as shown in Table
2. We achieved 67.2% mAP@50 with 23.1M parameters with Spike SNN. Our SpikeYOLO demonstrated +2.5%
higher accuracy than equivalent ANN architecture. We documented 5.7x energy efficiency improvement,
confirming SNN advantages for neuromorphic data.

Table 2: Results on the Genl dataset.

Model Parameters | Power | mAP@S0 | mAP@S0:95 Energy
(M) (mJ) (%) (%) Efficiency

YOLOv3-tiny 10.2 5.1 44.5 -
SpikeYOLO 23.1 73:5 64.7 39.7 Baseline
ANN Equivalent
SpikeYOLO 23.1 12.9 67.2 40.4 5.7x
(T=4xD=2) improvement
SpikeYOLO 23.1 19.7 66.4 38.9 3.7%
(T=5xD=1) improvement




Neuromorphic Hardware Deployment Analysis

Recent studies on neuromorphic hardware deployment reveal significant challenges when scaling complex object
detection models. We found a table that reveals the significant challenges of deploying complex object detection
models on current neuromorphic hardware. YOLO-KP running on Loihi demonstrates substantially worse
performance compared to conventional hardware (Jetson Xavier), consuming 10.4 mJ/frame with 36.3 ms latency
versus Jetson's 14.1 mJ/frame and 3.11 ms latency - resulting in an 11.7x latency penalty despite only 26%
energy savings. However, this performance must be contextualized by the dramatic difference in computational
complexity: YOLO-KP processes 18x larger inputs (448%448x3 vs 66x200x3) and employs 10x more parameters
(3.4M vs 0.35M) than the simpler PilotNet model, while requiring a 5-chip networked configuration that introduces
inter-chip communication overhead. The modest improvements when excluding 1/O operations (15% energy
reduction, 12% latency improvement) indicate that computational complexity, rather than data transfer
bottlenecks, represents the primary performance limitation. These results highlight that while neuromorphic
hardware can execute complex object detection tasks, current multi-chip scaling approaches face significant
efficiency challenges, reinforcing the need for purpose-built architectures like SpikeYOLO that are specifically
designed to leverage neuromorphic hardware strengths rather than adapting conventional models.

Model Platform Energy/frame Latency Throughput EDP
(mJ) (ms) (FPS) (nJs)

YOLO- Loihi, 104 36.3 275 379
KP
YOLO- Loihi, 8.86 31.8 314 282
KP (no 10)
YOLO- Jetson 14.1 3.11 322 43.8
KP Xavier
PilotNet | Loihi 1.26 65.4 137 82.5
PilotNet Jetson Nano | 21.9 5.77 173 126

The above analysis demonstrates that SpikeY QL Q's architectural innovations address critical
limitations in neuromorphic deployment:

The above analysis demonstrates that SpikeYOLO's architectural innovations address critical limitations in
neuromorphic deployment:

. Simplified Architecture: Reduces the computational complexity that causes multi-chip scaling issues

. Integer-LIF Design: Minimizes the quantization errors that compound across networked chips

. Purpose-Built Approach: Designed for neuromorphic constraints rather than adapted

4. Conclusions and Recommendations

We successfully designed, implemented, and evaluated SpikeYOLO, demonstrating that neuromorphic
approaches can achieve competitive detection accuracy while providing substantial energy efficiency
improvements. Our work represents a significant advancement in energy-efficient object detection. The results
validate the practical viability of neuromorphic object detection for real-world deployment, particularly in
scenarios where power consumption is critical and temporal data processing is required.

5. Roadmap

We are going to ship our neuromorphic HDK (Artix-7/US+, PCle Gen2 x4) to early users with SDK v0.1 and
reproducible YOLOv8/YOLO-KP benchmarks (target 240 FPS @ <1 W, ~75.7 GOP/s/W); validate neuromorphic
advantages with end-to-end energy profiling and temporal-sparsity wins (22-3x GOP/s/W vs. Jetson Nano)
across multiple scenes; and advance a 28 nm ASIC targeting ~1.2 TOP/s, ~0.3 W, (~4.0 TOP/s/W), with
performance targets validated via pre-silicon emulation, shuttle tape-out, and post-silicon correlation.
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