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Platform Goal

Architecture

Use Case

Gesture recognition for safety-critical Human Machine Interface (HMI) in industrial and clinical settings
requires sub-10 ms end-to-end latency, low energy per inference, and robust operation under noise and
variable lighting. Real-time response and low power consumption are key requirements that can be
effectively addressed by brain-inspired algorithms and neuromorphic systems. To meet these demands, we
are developing a spiking neural network (SNN) for classifying gesture recognition data. The project aims to
build a real-time gesture recognition model optimized for edge deployment, balancing power efficiency with
rapid inference. Evaluation is performed on our T1C custom neuromorphic hardware, which leverages
brain-inspired spiking neural networks to process gesture data quickly while minimizing energy
consumption. This architecture leverages sparse, recurrent dynamics to preserve temporal micro-structure
while minimizing memory bandwidth and power, making it suitable for power-constrained, real-time
deployments in life-critical and industrial environments.

The spiking recurrent neural network (SRNN) was used because its recurrent architecture captures temporal
dependencies essential for dynamic gesture recognition, as shown in Figure 1, where hidden layers have
recurrent connections that allow processing of  sequences and maintain continuity in spatiotemporal information.
This is crucial for gestures with subtle timing differences in event-based DVS data. Although spiking neural
networks usually use Leaky Integrate-and-Fire (LIF) neurons, the chosen model replaces them with Liquid Time
Constant (LTC) neurons, which dynamically adapt membrane and threshold time constants based on inputs and
network states. This enhances the network's ability to model diverse temporal dynamics with fewer layers and
less computation, improving training efficiency and making inference suitable for real-time, low-power embedded
devices. The network topology includes input neurons corresponding to the frame size, two recurrent layers of
256 neurons each, and classify 11 classes. The total number of  timesteps was set to 50.

To evaluate our model, we use the DVS128 Gesture Dataset, which provides event-based recordings of  11
distinct hand gestures performed by 29 subjects across three different lighting conditions, reflecting realistic
environmental variability. Each gesture recording spans 6 seconds, with events captured asynchronously by
a Dynamic Vision Sensor that detects changes in pixel brightness, offering a high temporal precision with
time steps reduced to milliseconds. This rich temporal data allows spiking neural networks to process
dynamic, time-dependent information effectively, enhancing their ability to learn and recognize complex
gesture patterns. The combination of  temporal detail and real-world variability makes this dataset ideal for
benchmarking advanced gesture recognition models designed for practical, safety-critical tasks.
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Results
Device Power Efficiency GOP/s/W

T1C Neuromorphic Hardware 75.76

NVIDIA Jetson Nano 8.00

NVIDIA RTX 3060 GPU 3.81

Intel i9-12900H CPU 0.31

Technical Performance

Our neuromorphic system, implemented on a Xilinx/AMD Artix UltraScale+ (XCAU15P) FPGA, delivers 41.67
GOP/s at ~0.55 W, achieving 75.76 GOP/s/W. This is ~244× more energy-efficient than an Intel i9-12900H
(0.31 GOP/s/W), ~19.9× more efficient than an NVIDIA RTX 3060 (3.81 GOP/s/W), and ~9.5× more efficient
than Jetson Nano (8.0 GOP/s/W). The combination of  sub-watt power and high throughput supports real-time,
on-device gesture classification on DVS128 without cloud dependence, aligned with safety-critical HMI
requirements. Together with robust performance on DVS128 under variable lighting and noise, the system directly
addresses the core requirements for scalable, efficient, and safety-critical gesture detection at the edge.

Roadmap

Current priorities focus on characterizing the baseline gesture recognition model on the custom neuromorphic
hardware, despite the current challenges posed by hardware capabilities and configuration within the HLS
framework. This initial step will allow us to establish reliable measurements of  the model’s performance and
energy efficiency directly on neuromorphic hardware. Building on these results, the next phase will focus on
improving recognition accuracy and energy efficiency by exploring alternative model architectures and training
mechanisms, such as more advanced neuron models, optimized learning algorithms, and specialized training
strategies tailored for spiking neural networks.
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Figure 1: Spiking Recurrent Neural Network Architecture for Gesture recognition


